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SUMMARY

Structuralmodelsanddesignanalysismethodologyhavebeencreatedfor compositeprimary
aircraft structures that are appropriate for the preliminary or conceptual phase of design. Emphasis
has been given to high aspect ratio wings and the potential of aercelastic tailoring to enhance lift
production. In contrast to previous work devoted to tailoring specific configurations to specific
missions, this research focuses upon understanding, modeling, tailoring mechanisms and creating
design concepts that accentuate individual behavioral characteristics. As the roles of wing bending
and twisting deformations are rather well understood, attention is directed to elastically produced
chordwise camber. A scientific understanding of behavior and design concepts which accentuate
camber producing deformations are presented and applied to a generic transport wing.

The models are simple. Closed form expressions for all the sfiffnesses and compliances permit
rapid assessment of design changes and facilitate understanding of the cause-effect relationships
between configuration and response. The models are useful for teaching, initial sizing m
preliminary design, optimization and parametric studies, providing trend information, establishing
intuitive insight into behavior and isolating and identifying independent design-controlled
mechanisms. Validation of models by large-scale finite element simulation and selected
experiments is conducted for the bending concept of producing favorable camber deformations.

Two primary and two secondary structural concepts have been created which produce
chordwise camber deformation that results in enhanced lift. A wing box can be tailored to utilize

each of these with composites. In attempting to optimize the aerodynamic benefits, we have found
that there are two optimum designs that are of interest. There is a "weight" optimum which
corresponds to the maximum lift per unit structural weight. There is also a "lift" optimum that
corresponds to maximum absolute lift. Experience indicates that a large weight penalty
accompanies the transition from weight to lift optimum designs.

It appears that lift enhancements of sufficient magnitude can be produced to render this type of
wing tailoring of practical interest. If reasonable assumptions are used for angle of attack and a
margin against airfoil stall is considered, section lift increases of up to fifteen percent are predicted.

INTRODUCTION

Elastic tailoring refers to the utilization of the design flexibility of composites to achieve
performance goals. The goals are usually accomplished by selecting an appropriate structural
concept, fiber orientation, ply stacking sequence and a blend of materials. In aeronautical
applications, emphasis has been given to tailoring deformations which influence the aerodynamics
of the system (ref. 1). This is called "aeroelastic tailoring." Aeroelastic instabilities may be
avoided in this manner (ref. 1), as in the X-29, or performance enhancements, such as increased

lift (refs. 2, 3) or maximizing lift-to-drag ratio (ref. 1), can be achieved.

Early work in aeroelastic tailoring focused on simple laminated construction of plate-like, rather
low aspect ratio lifting surfaces. The design procedures are described in ref. 4 in the following
manner:

"The design for a desired static aeroelastic response was
initially an iterative process performed by a structural engineer
trying to satisfy a requirement for twist and camber established
by an aerodynamicist."
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Since that time, considerable progress has been made, including the effective use of optimization
algorithms (refs. 1, 4). Emphasis, however, seems to have been given always to tailoring specific
configurations to specific missions, a practice that did not foster scientific understanding or permit
a firm grasp of the cause-effect relationship between configuration and response. In contrast to

this approach, our research breaks with the past and focuses upon understanding, modeling,
tailoring mechanisms and creating design concepts that accentuate individual behavioral
characteristics.

Interest in swept forward wings, which resulted in the X-29, focused attention on wing
bending and twisting deformations. As these deformation modes are understood rather well now,
our research has emphasized elastically produced chordwise camber. While camber deformations
have been tailored by ad hoe methods for specific configurations (ref. 4), it remained to create the
basis for scientific understanding of behavior and design concepts which accentuate this
deformation mode.

Structural tailoring concepts have been developed to create wings with elastically produced
camber for the purpose of increasing the lift generated by the wing. Currently, the usual means of
accomplishing this is with controls, the most common of which are flaps. If natural, intrinsic
means are used to enhance lift, then flap requirements and their associated systems may be
reduced. This will yield weight savings, acquisition cost savings and maintenance cost savings.
The desired effects are presented in fig. 1.

The fundamental mechanisms that are utilized produce camber deformations in response to the
usual loading of the wing such as bending moments and torque. The camber enhances the
production of lift and further modifies the loads. Significant lift increases may be produced by
tailoring using modem composite material systems (refs. 2, 3). An Overview of this research is
given in ref. 2.

There are several concepts that have been used in our tailoring work. They are illustrated in
figs. 2 and 3. The continuous filament grid stiffened structures (fig. 3) are particularly useful for
tailoring response. One way to elastically tailor a structure is to orient the stiffeners suitably with
respect to the primary load direction to derive the most desirable response. Grid-stiffened concepts
are particularly effective for elastic tailoring a structure because stiffeners made of unidirectional
material can be oriented to create a wide variation of elastic properties.

This report is organized as follows. Modeling is discussed first, followed by a presentation of
concepts for producing elastic camber deformations. Design analysis methodology specifically
devoted to the bending concept of producing camber is presented and applied to a transport wing.
Next, the twisting concept for camber creation is treated and applied to a transport wing with the
same external dimensions considered previously. Finally, experimental methodology is described
which was utilized to evaluate the bending concept for a small-scale model box beam, and

experimental data are presented and correlated with analysis predictions. A summary of the project
accomplishments is given followed by the references.

Short, self-contained subjects are presented in appendices. Appendix A is concerned with the
aerodynamics of chordwise deformable wings. Appendix B is a compilation of stiffness equations
for our simple ideal tailored box model for aeroelastic tailoring studies. Appendix C contains a
finite element correlation study for a small scale model box beam. Appendix D is devoted to rib

concepts for chordwise deformable wings. In Appendix E, a static aeroelastic stability analysis is
given for uniform wings. Lastly, a simple two degree of freedom aeroelastic model is presented in
Appendix F that is useful for stability studies and gust response studies.
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NOMENCLATURE

Steady Aerodynamic Matrix, eq. (1-25)

Cross sectional area of individual stiffener

Steady aerodynamic coefficients, eqs. (1-27)

Enclosed area of cross section cell

Laminate membrane stiffnesses for wing box covers, eqs. (10)

Fourier coefficients for thin airfoil theory, eqs. (A-4, 5)

Lift curve slope for airfoil section

Coefficients for characteristic equation, eqs. (1-30, 31)

Effective Poisson's ratio, eq. (62)

Twist-camber coupling parameter, eq. (63)

Effective reduced bending stiffness, eq. (23)

Aerodynamic chord

Generalized stiffness matrix, eq. (1-23)

Generalized stiffnesses, eqs. (1-7, 8, 9)

Beam stiffness matrix, eq. (16)

Chord of wing section structural box

Circumference of structural box cell

Airfoil ,section drag coefficient

Airfoil section lift coefficient

Airfoil section pitching moment coefficient

Aerodynamic damping matrix, eq. (1-24)

Aerodynamic damping coefficients, eq. (1-26)

Young's modulus of composite material in fiber direction

Extensional stiffness of aluminum closure channel, eq. (77)

Bending stiffness of aluminum closure channel, eq. (69)

Eccentricity parameter of aerodynamic center relative to structural axis location,

eq. (E-14)

Beam generalized internal force matrix, eq. (12)

Airfoil geometric factor, eq. (A-10)

Height of wing section structural box

Skin thickness of load bearing covers of the wing structural box

Equivalent smeared thickness of skin and stiffeners, eq. (50)

Thickness of k-th ply of a laminate

Integrals defined in eqs. (1-15)
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Mass moment of inertia of wing section about the shear center axis per unit span,

eq. (F- 14c)

Generalized mass, eq. (F-13c)

Geometric parameter defined in eq. (30)

Structural box cover stiffnesses defined in eqs. (9)

Parameter defined in eq. (E-13)

Structural box cover stiffness per unit skin thickness def'med in eq. (48)

Camber curvature kinematic matrix defined in eqs. (31, 32)

Lift per unit span, eq. (A-l)

Spanwise bending moment

Generalized mass defined in eq. (l::-13a)

Generalized mass matrix, eq. (F-22)

Pitching moment per unit span about aerodyanmic center, eq_ (E-5)

Chordwise bending moment

Spanwise bending moment

Twisting moment

Mass per unit span of wing structure

Distributed torque given in eq. (E-4)

Axial force (eq. (6)), number of laminate plies (eq. (10))

Membrane shear flow or stress resultant

Circumferential (hoop) membrane stress resultant

Themal stress resultant defined in eq. (34)

Membrane stress resultants

Prescribed distributed running load in the wing box covers

Stiffening parameter defined in eq. (38d)

Pitch between parallel rows of stiffeners

Generalized forces defined in eqs. (F-18)

Plane stress stiffnesses for each ply of a laminate

Beam shear force components defined in eq. (7)

Shear flow, dynamic pressure

Spanwise distributed loading (transverse force per unit span)

Beam flexibility matrix

Static unbalance per unit span defined in eq. (F-14b)

Generalized mass defined in eq. (F-13b)

Beam extensional compliance

Beam bending-extension coupling compliance
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Beam twisting compliance

Beam spanwise bending compliance defined in eq. (68)

Beam camber compliance defined in eq. (72)

Kinetic energy

Tune

Displacement components of the beam reference axis (shear center axis)

Elastic strain energy due to beam bending and twisting, eq. (F-3)

Components of the displacement vector in the (x, y, z) directions, respectively

Out-of-plane warping displacement component for beam cross section

Modal amplitudes associated with beam twisting and spanwise bending,

respectively

Freestream air velocity

Displacement components associated with in-plane warping of beam cross

sections

Cartesian coordinates

Eccentricity of aerodynamic center relative to structural axis location for a wing

airfoil
section

Airfoil angle of attack, elastic rotation angle

Effective dynamic angle of attack for an airfoil section given in eq. (F- 16)

Laminate fiber orientation parameter defined in eq. (21)

Beam cross section rotations defined in eqs. (4) and (5), respectively

Virtual work of external forces

Increment in airfoil section lift coefficient due to chordwise camber

Maximum strain level

Spanwise extensional strain in wing box covers

Mean extensional limit strain

Chordwise strain in wing box covers

Chordwise membrane strain in wing box covers

Components of extensional strain

Thickness coordinate associated with laminated wing box cover

Beam compliance coupling parameter, eq. (78)

Membrane shear strain in cell wall of wing section structural box, eq. (26)

Components of engineering shear strain

Mean spanwise transverse shear strain components

Spanwise curvature, eq. (66)
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Mean section chordwise camber curvature, eqs. (29) and frO)

Spanwise curvature of beam reference axis

Elastic twist angle

Freestream air density

Dominant skin fiber orientation angle

Stiffener orientation angle

AC

EFF

C

CA/4

i,j,k

l

U

Refers to aerodynamic center

Refers to effective value

Refers to box beam closure channel

Refers to quarter chord location

Refers to indices assuming the values 1, 2, 6

Refers to lower wing box cover

Refers to upper wing box cover

1

O

k

T

Refers to property of a stiffener

Refers to property of the wing cover skin

Refers to identifying index

Refers to thermal properties

MODELING OF HIGH ASPECT RATIO

COMPOSITE WINGS

Preliminary Remarks

Modeling plays a significant role in science and engineering. In fact, the way we understand
our world is largely through the study of models of real systems. For the present purposes, we
define "model" to be a set of rules which establishes relationships among significant variables and
parameters in a physical situation.

For use in engineering design, models must be relatively simple but provide a sound
description of physical behavior. Simplicity is essential as cause-effect relationships between

configuration and response must be fully understood, physical mechanisms and the parameters
influencing them must be clearly identified and, generally, many iterative design analysis cycles are
required. Often the analysis cycles are conducted with the aid of an optimization algorithm to reach
performance goals without violating constraints that would impair structural integrity or other
conditions that limit usefulness or performance.

In this report, a new, simple structural model is presented which is intended for use in
aeroelastic tailoring studies of high aspect ratio wings. This model has many advantages and uses.
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Hopefully, it will serve to facilitate both understanding and preliminary design. By this means, the
"mystery" of aeroclasilc tailoring will be diminished as well.

Elastic and Aeroelastic Tailoring

A significant attribute of laminated composites is their design flexibility. The layers or plies of
a laminate are, in fact, modular units which can be selected to provide distinct ma.terial properties
and fiber orientations. It is possible, therefore, to "tailor" the properties of composites to meet

specific design requirements.

Tailoring of composite laminates to achieve favorable or desired characteristics has been
applied effectively. The swept forward wing of the X-29 Fighter is a prime example. The la .yup
of the wing skins for this aircraft was selected to utilize overall bending-twist coupling of the wing
box to avoid static torsional divergence, a chronic problem normally inherent in swept forward

wing designs. This permits the swept forward wing design to be used. This type of wing
configuration stalls from root to tip, which preserves aileron effectiveness and thereby prevents
spin instabilities. Also, a lower wing profde drag at the transonic maneuver design point was
achieved.

A second example which is currently undergoing development is the creative use of extension-
twist coupling in rotor blades to achieve enhanced performance (ref. 5). The principle utilized is
that the blade rotational speed, through extension-twist coupling, can be used to alter the twist of
the blade to favorably influence the aerodynamics. An enhanced flight envelope and increased
range are sought due to delay of blade stall in hover.

The above examples strongly indicate that tailoring can be utilized effectively if

1) The behavior in question is thoroughly understood physically;

2) The mechanism(s) is (are) clearly identified; and

3) Favorable changes of sufficient magnitude can be produced.

The cornerstone of elastic tailoring with composites is modeling. We select the well
established thin-walled beam theory of Rehfield (refs. 5-7) to serve as a basis for our models of

high aspect ratio composite structures, appropriately modified to predict chordwise camber
deformations.

Tailored response utilizing elastic coupling mechanisms for thin-walled beams is achieved by
skewing angle plies with respect to the beam axis. Two limiting archetype configurations are
shown in figs. 4 and 5. The circumferentially uniform stiffness (CUS) configuration produces
extension-twist coupling with bending-transverse shear as a parasitic coupling mechanism (ref. 7).
The other configuration, eircumferentially asymmetric stiffness (CAS), produces bending-twist

coupling with extension-transverse shear as a parasitic coupling mechanism (ref. 7). The angle e
in figs. 4 and 5 denotes the dominant off-axis angle ply orientation in the upper and lower surface
wall configurations. These limiting forms are interesting because they isolate the two primary

independent coupling mechanisms of extension-twist and bending-twist.



Thin-Walled Composite Beam Theory

The theory of Rehfield (ref. 5) provides the basis for this work. Attention will be confined to
single cell beams, which provide elementary means for exploring the new coupling mechanisms.
A typical beam model and the coordinate system arc shown in fig. 6.

Kinematics

The components of the displacement vector are taken in the form (refs. 5-7)

u = U(x) + y_z(x) + Z_y(X) + ul (1)

v = V(x)-z#(x) (2)

w = W(x) + y_(x) (3)

where the section rotations are

13y= _z(X)-w,_ (4)

13z= _y - V,x (5)

The above expressions are valid up to moderate bending and twisting rotations and small strain
states. Also, the shear center of the cross section and x-axis projection have been assumed to
coincide.

The displacement contribution ul is the out-of-plane warping (OPW) displacement, which is
familiar from the St. Venant theory of bending and twisting of beams (ref. 8). The most
significant contribution to ul is twisting related warping. It may be expressed as (refs. 5-7)

ul = V_p,x (la)

where _ is the St. Venant torsion function which characterizes out-of-plane warping due to global

twisting deformation. It is thoroughly evaluated and discussed in ref. 6 for a model rotor blade.
Generally, OPW displacement contributions create boundary layer zones near boundaries where
they are restrained from freely developing due to a high degree of fixity. The essential physical
nature of the response is not altered by OPW displacements. Tip rotation in the model rotor blade
considered in ref. 6 is lowered by approximately ten percent due to twisting-related out-of-plane
warping.

Nonuniform OPW effects will be ignored in the present work, as is the custom in aeroelastic
studies. This is a conservative assumption for aeroelastic instability predictions.

These effects may be analyzed by superposition of boundary layer solutions in the manner
utilized by Valisetty, Murthy and Rehfield (ref. 9).
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Generalized Forces

The consistent generalized forces are determined with the aid of the Principle of Virtual Work

(ref. 5). They are defined as

(N,My,Mz) =
Nxx (l,z,y)ds (6)

(7)

Complete equilibrium equations and admissible boundary conditions appear in ref. 5. The
enclosed cell area is ,%, and c is the circumference of the closed cell. The integrals are taken
around the closed cell in a counterclockwise direction.

Force-Deformation Relations

Composite thin-walled construction is charac_dzed by the membrane stiffness matrix K which
relates the non-zero stress resultants to the membrane strains. The constitutive relations are

Nxx = KI l£xx + Kl2_/xs

Nxs = K12£xx + K22_'xs
(8)

The stiffnesses K11 corresponds to uniaxial extension, K22 corresponds to shear, and Kt2 is a

coupling stiffness. They are related to the usual stiffness matrix A (refs. 5-7) as follows

Kll =All --lz
A22

KI2 = AI6 - AI2A26
A22

K22 = A66 A_6
" A22

(9)

For a laminate of N plies, the stiffnesses are determined by simply adding the plane stress

stiffnesses, Qij, for each ply. Thus

Aij= _._Qij(k)hk (i,j= 1,2,6)

k=l

(10)

where hi, is the thickness of the kth ply. The ply stiffnesses depend upon the material system,
material form and fiber orientation.

Equations (8) describe the elastic response because the circumferential stress resultant, Nu, is
neglected. This is justified in the absence of internal pressure.
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The deformation variables or generalized strains are easily identified from the strain

expressions. Arrayed in a column matrix u they are

(II)

Similarly the generalized internal forces can be put in a column matrix form as

F --[N Qy Qz Mx My Mz.JT (12)

The relationship between the beam and its reference axis (the coordinate direction x) has not yet
been specified; however, it is convenient to choose it in a manner that differs from that of refs. 5-7.
We choose a geometric axis system that is det'med such that

ds = 0
(13a)

_ zds=O
(13b)

The x-axis, therefore, is located at the centroid of the enclosed cell area. In addition, the
orientation of the y- and z-axis can be selected such that

zds = 0
(14)

A fixed geometric axis system is particularly convenient for studying damage processes in
composite structures. As plies become damaged and lose effectiveness, the reference axes do not
have to be moved.

Since the force and the deformation are linearly related, a symmetric 6 x 6 stiffness matrix, C,
can then be defined such that

F = Cu (15)

By virtue of the procedure and choice of axes defined above, the elements of C consist of 21
independent stiffness constants

(C 11 ,C 15,C 16,C55,C56,C66) "

KI l(1,z,y,z2,yz,y2)ds

(16a)

(C 12,C 13,C 14,C25,C26) --
(16b)
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(C35,C36.C45,C46) -- (16c)

(C22'C23'C24'C33'C34'C44) = (16d)

_.lds/ dsds c ds ° c ds

In order to apply forces and calculate beam deformations, however, it is necessary to invert eq.
(15) to obtain the compliance relationship

u - S F (17)

where S = C "1 is the flexibility matrix. Alternatively, the flexibility or compliance matrix may be
evaluated directly from the complementary strain energy per unit length of beam (tel 9).

In-Plane Warping Displacement

The above theory may be modified to permit evaluation of in-plane warping (IPW)
displacement components To this end, we replace eqs (2) and (3) by the following expressions:

v = V(x) -z_(x)+ vl

w = W(x) + y_(x) + wl

(18a)

(18b)

The components vl and wl are associated with IPW. The component wt may be identified with

IPW effectsarevery importantinaeronauticalstructuresbecause sectionshape changes effect

the aerodynamic characteristicsofthe structure_,There is,therefore,the opportunitytofavorably

tailor the structure to enhance aerodynamic performance.

The thin-walled structure is assumed to be described adequately by classical lamination theory
and the Kirchhoff hypothesis. Consequently, we have only to consider the three membrane strain

components Exx, Yxs, and Ess. Since the hoop stress resultant, Nss, vanishes (for no internal

pressure)

_ss = - _.1.._(Al2exx + A26 Txs) (19)
A22

Consequently, from the strain transformation equations

(20a)

(20b)

(20c)
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Eqs. (20a) - (20c) must be integrated to evaluate the IPW displacement components.

A Simple Aeroelastic Section Model

The Ideal Tailored Box Model

Our studies of tailored wings have shown the utility of the simple cross section model shown
in fig. 7. This model is the result of considerable design analysis experience. We call it the "Ideal
Tailored Box Model." The upper and lower covers are load beating, while the webs are assumed
to be nonstructural. The role of the webs is to preserve the closed cell load path in torsion and
maintain the geometry of the section (inf'mite transverse shear stiffness) while not contributing to
the extentional, bending and torsional stiffnesses of the beam. Mean or averaged stiffness
properties are considered uniform across the section width.

Great simplicity is achieved with this model. Closed form expressions for all the stiffnesses
and compliances permit rapid assessment of design changes and facilitate understanding of the
cause-effect relationships between configuration and structural response. The model is useful for
teaching, initial sizing in preliminary design, optimization and parametric studies, providing trend
information, establishing intuitive insight into behavior on the part of the designer and isolating and
identifying independent design-controlled mechanisms. Stiffness equations are summarized in
Appendix B.

Model-Structure Correspondence

One use for the model is analyzing the response of an existing structure. In such an instance,
we have found that a useful approach to fixing model parameters is to require correspondence of
global extensional stiffness, spanwise bending stiffness, and torsional stiffness. In addition, since
our model has five parameters for symmetric upper and lower cover configurations, we match

global fiber orientation effects through a parameter denoted "_" in refs. 6 and 7 and an effective

chordwise bending stiffness. The parameter 13is clef'meal as

[3 = (KI2}2/KllK22 (21)

Since only the load bearing covers contribute to the stiffnesses, it is not possible to model all of
them with fidelity. Because the webs of the structural box are not modeled, the transverse shear
stiffness C3._ associated with spanwise bending and the bending-transverse shear coupling
stiffness C36 cannot be modeled independently. A natural choice for establishing correspondence
emerges for the case of chordwise compact sections.

A chordwise compact section is one for which

H/Cs < < I (22)

This is a typical characteristic that applies to most, if not all, airfoil sections. For this class of
section, we assume Bemoulli-Euler behavior for spanwise bending, which is equivalent to letting
C33 become infinitely large in the global compliance equations. The result is that
deformations are ignored for spanwise bending. Again, this restriction is not serious for the usual
airfoil sections encountered in aeronautics.

Chordwise bending behavior, while affected by transverse shear deformations through the
stiffness C22, is controlled by the effective reduced bending stiffness (C66)_'F defined as
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(C66)E = C66- (C36)2/c33 (23)

A thorough discussion of reduced bending stiffnesses appears in ref. 6. The practical result is that
the structure responds to bending loads as if the bending stiffness is reduced by virtue of the
presence of the bending - transverse shear coupling stiffness---in this case, C36. This unwanted,
parasitic effective stiffness reduction can be as great as fifty percent (refs. 6, 7). For this reason,
we choose to match the reduced chordwise bending stiffness in eq. (23) as the condition for
model-structure correspondence.

Application to the Langley Rotor Blade

The rotor blade studied in ref. 10 is a convenient example to illustrate model-structure
correspondence. It appears in fig. 8. The results of applying the principles for matching
parameters above to this blade appear in Table 1.

The results in Table I confirm that a high degree of correspondence has been achieved between
the rotor blade and our simple aeroelastic model.

If greater physical fidelity is desired, the webs may be modeled. This, however, creates
ambiguity and complexity, and much of the appealing simplicity is lost. In its present form, the
Ideal Tailored Box Model includes all of the physical effects that earlier work has shown to be
essential to good predictions of global behavior (refs. 5-7).

Simplified Analysis of In-Plane Warping

Displacement for Chordwise Compact Sections

The differential equations which permit evaluation of IPW displacement components are given
in eqs. (20). They may be simplified further for chordwise compact sections which satisfy the
inequality of eq. (22). In particular, we introduce the following approximations:

dy
d--_-=I , dZds--0 (24)

Consequently

V l,y -- Ess (25a)

wla = gzz -=0 (25b)

Vl,z + Wl,y --'Yyz_ O (25c)

Note that eqs. (25) are completely consistent with the physical approximations inherent in the Ideal
Tailored Box Model.

Also consistent with this level of physical approximation is the following expression for shear
strain:

Yxs---_xy -_,x (26)
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This expression is valid when spanwise transverse shear deformations are ignored (_z = 0) and the
section is chordwise compact. For the Ideal Tailored Box Model, the approximation corresponas
to uniform shear strain in the upper and lower load bearing covers.

Equations (25b,c) correspond to an IPW displacement field of the classical Bemoulli-Euler
type associated with, to this level of approximation, chordwise camber bendiw,. The result is

wi = Wl(x,y) (27a) -

vl =- zWt,y (27b)

Consequently, with the aid eqs. (25a), (26), (27) and (1) (with OPW effects ignored)

Vl,y "" ZWl,yy --- - (A22} -t (At2_xx + A26 Yxs)

----- (A22)'1 [AI2 (U,x + Z_y,x + yl3z,x)+ A26{_xy" z_,x)]

(28)

The left hand side of eq. (28), which suggests a linear variation with z, is not congruent with the
right hand side which reflects a more complex functional form. This situation may be resolved in a
number of ways. We choose to satisfy eq_. (28_ in an average sense. That is, we define the mean

camber curvature g¢ to be

_--. Wl,yy
(29)

where

Jy =_Z 2 ds
(30)

With the aid of eq. (28)

=-k u (31)

where k¢ is the camber curvature kinematic matrix with the elements

k¢ 1 - (Jy)-I _ (AI2 z/ A221 ds

J
(32a)

k¢2 = (jy)-I _ (A26 z/A22) ds
(32b)

kc3 = 0 (32c)
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[
k_4 (jy)-1

(A26z2/A22) ds (32d)
---.

(Al2 z2/A22) ds (32e)
k_s (jy)-i

kc6 -- (jy)-i _ (At2 yz
/A22) ds (32t)

and u is defined in eq. (11). Equation (31) supplements the matrix equation (15) and extends the
theory of Rehfield (refs. 5-7) to include estimates of IPW displacements.

In Appendix A we use thin airfoil theory to predict section lift and pitching moment coefficients

in terms of the mean camber curvature Kc. Thus, the aerodynamic consequences of tailored elastic
camber deformations are evaluated in a simple, straight-forward manner.

CAMBER PRODUCING CONCEPTS

Fundamental Camber Principle

Elastically produced camber is created by establishing a differential chordwise membrane strain
between the upper and lower box covers while preserving the structural box. This is depicted in
fig. 9. There are a number of ways of accomplishing the differential strain.

It is helpful to consider the general thermoelastic chordwise strain for a laminate according to
membrane theory. The relationship is

Ess = (A22)"I(Nss + NTs - AI2 Exx- A26 _xs) (33)

where N,T is the thermal stress resultant defined as

NTs = _ (Q21CTx+ Q22 cTs+ Q26 'IT.)d;
k=l

(34)

M

The stiffness coefficients QO are evaluated at the appropriate temperatures. The strains

T T T
cxx, _,s and Txs are due to thermal effects only, and the thickness coordinate is _. The first term in
eq. (33) due to the chordwise stress resultant N*, is influenced by internal oressure in the box.

The second term involving N,rs is due to thermal e?tpansion. The term proportional to A12 is

proportional to the spanwise strain due to extension _d bendine. Finally, the term proportional to
A26 is activated by transverse shear strain and twistine.

It is possible to conceive of tailored configurations that exaggerate each of these physical
effects. We refer to them as the pressure, thermal, bending and twisting concepts or methods for
producing elastic camber deformations. The different mechanisms are illustrated in figs. 10 and
11. The pressure and thermal methods are of secondary importance as sufficiently large
chordwise strain differentials cannot be produced for reasonable parameter values and current
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composite materials. The primary mechanisms that offer practical potential are the bending and
twisting methods. These two methods will be treated in detail subsequently.

Another method of producing elastic chordwise camber was discovered late in the program and
has not been thoroughly evaluated. We call it the "Unsymmetrical Cover Bending Method." It can
best be explained by referring to fig. 10. Two bending mechanisms are presented --- Global
Camber Bending and Local Cover Bending. Both mechanisms can be enhanced by unsymmetrical
wall and stiffener configurations that produce local extension-bending coupling in the stiffened
wall. Exploration of this mechanism requires another level of modeling. As it is a major

undertaking, we propose to study it under a future contract or grant.

The Bending Method

The bending method of creating elastically produced chordwise camber utilizes camber-bending
elastic coupling illustrated in fig. 10. We could equally well have called this "Exaggerated Poisson
Expansion." This method creates anticlastic chordwise bending deformation due to spanwise
bending. The mechanism is differential Poisson expansion of the upper and lower wing box
covers. This is a naturally occurring phenomenon, even for isotropic material structures. If the
properties of composite skin and unidirectional stiffeners are aggressively utilized, however, it is
possible to cream tailored configurations where the Poisson effects are dominant characteristics
rather than secondary ones. The objective, referring to eq. (33), is to tailor the structure in such a
way that the effective Poisson ratio (A12/A22) is large. Then, for identical upper and lower
covers, spanwise bending strains will produce substantial chordwise camber.

The results to date utilizing this method have been impressive. Using reasonable values for
angle of attack, Exaggerated Poisson Expansion can produce a section lift enhancement of up to
fifteen percent for a transport aircraft airfoil section. In addition, this mechanism can be utilized
without interfering with elastic deformations due to spanwise bending and twisting as balanced,
symmetric cover configurations may be employed.

The Twisting Method

The twisting method of creating camber is based upon the use of camber-twist elastic coupling
illustrated in fig. 10. This method, again referring to eq. (33), is to tailor the structure in order to

produce large values of the effective extension-shear coupling parameter (A26 / Az2). In contrast to
camber-bending elastic coupling, this mechanism exists only in unbalanced cover configurations.
In addition, the effective Poisson expansion due to (Al2 / A22) will also be present, so the camber-
bending mechanism will be activated simultaneously. Thus, a thorough design and optimization
study is required to select the "best" configuration.

Also, in contrast to pure camber-bending balanced symmetric cover configurations, the
unbalanced covers give rise to configurations which are globally circumferentially asymmetric
structures (fig. 5) which possess global spanwise bending-twist elastic coupling. In general,
therefore, the system design is more involved for utilization of the twisting method of producing
camber. This provides an opportunity, however, tO simultaneously tailor spanwise bending,
spanwise twisting and camber deformations.

On the basis of camber production alone, twist-camber coupling can achieve camber and
section lift coefficients comparable to camber-bending coupling. It must be remembered, however,
that the configurations that are "best" for the utilization of the respective methods are physically
quite distinct. The difficulty of dealing with unbalanced configurations is somewhat of an
impediment to implementing this mechanism. Unbalanced configurations lead to difficulties
associated with avoiding warping, twisting and bending distortions in manufacture.
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Secondary Camber Mechanisms

The remaining two elastic camber producing mechanisms are illustrated in fig. 11. The third
concept which utilizes internal pressure we call "Internal Pressure With Dissimilar Covers"
(IPWDC). The fundamental idea behind the IP_ mechanism is to use dissimilar covers such
that the stiffness A22 of the upper cover is much less than that of the lower cover. Under the action
of positive internal pressure chordwise (and spanwise) tensile stress resultants are produced which
stretch the covers in the chordwise direction. Since the upper cover stretches chordwise more than

the lower cover and the integrity of the structural box is maintained, camber deformation results.

Unlike the two deformation mechanisms treated earlier, camber deformation in this case is

present as long as the internal pressure acts. Thus, if fuel pressure alone (15-20 psi) is used, tittle
control over the camber can be exercised. The possibility of creating an artificial positive pressure
which can be controlled is a consideration, but it adds difficulties of its own.

Unfortunately, an evaluation of this concept shows that this is a weak mechanism. For
extreme structural configurations and typical fuel pressures, the resulting contribution to the lift
coefficient is insignificant. Consequently, after the initial evaluation, study of this method was
discontinued.

A fourth mechanism, Auemented Thermal Ext_ansion (ATE), has also been evaluated. Like

IPWDC, the basic idea is to create a greater chordwise strain in the upper cover of the box than the

lower, thereby producing a camber deformation. In this case, thermal expansion strains are
augmented by intentional local heating of the upper cover to produce up to 400F temperature
differences between the covers. This mechanism is also weak and appears to be of no practical

value by itself. After the initial evaluation, study of this idea was discontinued as well. Section lift
coefficient increments less than three percent are created by this mechanism.

Closing Remarks

We have introduced the methods that we have created to produce elastic chordwise camber

deformations in this section. The secondary methods will not be discussed further as they do not

appear to be practical by themselves. Two parallel design.analyses will be presented for the
bending and twisting methods subsequently for a transport wing application. Also, the results of

an experimental program to evaluate the bending method will be presented later.

DESIGN ANALYSIS METHODOLOGY - BENDING METHOD

Preliminary Remarks

Our beam-like analysis together with the simple Ideal Tailored Box section model have been
created for use in the preliminary or conceptual phase of design. The design analysis methodology
that we have developed is correspondingly appropriate and consistent with the level requited at this
stage of the design process. In contrast to the previous work of others (refs. 1, 4), we will not
tailor specific configurations to specific mission requirements. Instead we seek scientific
understanding of behavior and design concepts which accentuate camber producing deformations.
A generic transport wing serves as a vehicle for evaluating camber producing configurauons.

The wing box model appears in fig. 12. Only the structural box covers are assumed to be load
bearing in keeping with our Ideal Tailored Box modeling approach. The model is based upon the
center wing structural box of the Lockheed C-130 transport. This avoids the complexity of wing

sweep. All dimensions other than skin thicknesses are those of the C-130.
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For study of the bending method, a balanced configuration with identical upper and lower
covers has been selected. The material properties correspond to A54/3501-6 graphite-epoxy; they
appear in Table 2.

Basic Configurations - Bending Method

Camber without the presence of other forms of section deformation can be produced by
creating balanced configurations of skin layup and stiffeners with respect to the stiffened beam's
axis. Under pure bending, no twisting will occur. A typical stiffener-skin pattern appears in fig.
13.

The stiffeners are taken to be made of unidirectional composite material with rectangular cross
sections of the type that may be created by winding or weaving technology. Also, [0J-degree
stiffeners parallel to the beam axis may be added for structural efficiency. These stiffeners enhance
overall bending stiffness without affecting the camber creating mechanism.

Since membrane behavior is considered for the upper and lower wing box covers, local
bending effects due to cover buckling or postbuckling are excluded at this level of modeling. The
influence of the box webs are neglected for convenience in keeping with the Ideal Tailored Box
Model.

A single skin fiber orientation angle 0o (fig. 13) is considered. This is not overly restrictive as
[0] and [90] plies may be added without altering the camber-bending coupling significantly. For
the final result we want both efficient load bearing ability and sufficient camber-bending coupling.

This camber producing concept requires that a large effective Poisson's ratio be given to the
wing covers. This can be accomplished by utilizing the balanced stiffener pattern and a balanced
skin layup as shown in fig. 13, with both upper and lower covers identical in stiffness. The skin

and stiffener orientation angles 0o and 01, together with appropriate dimensions, are selected to
produce a large Poisson's ratio while carrying the basic bending loads. Let x denote the spanwise
coordinate and y a chordwise coordinate. For membrane behavior in the covers

Nxx - All £xx + AI2 _yy

Nyy - A12 £xx + A22 £yy

Nxy "- A66 Yxy

(35a)

(35b)

(35c)

The membrane stress resultants are Nxx, Nyy and Nxy, the membrane strains are F.xx,gyy, and %y
and the Aij's are membrane stiffnesses as before.

The stiffnesses are composed of two contributions, one due to the skin and the other due to the
stiffeners. The influence of stiffeners is accounted for in an averaged manner. The stiffeners are
"smeared" or "averaged" over the area of the skin. The stiffnesses may be written as

Aij = A_ + A_j (36)

We adopt the convention that superscripts "o" and "1" refer to the skin and stiffeners, respectively.
For a laminated skin of N plies, the skin stiffnesses are determined by simply adding the plane

stress stiffnesses, Qij, for each ply. Thus
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N

A_ -- _ _ij)hk (ij = 1, 2, 6) (37)
k=l

where hkiS the thickness of the k-th ply. The ply stiffnesscs depend upon the material system,
material form (fabric or tape, for example) and fiber orientation.

The stiffeners carry only axial loads and their effects are "smeared" over the surface. These
stiffness contributions are

A_t = 2E_t hn cos 4el (38a)

A_2 = 2E_I hn sin2el cos2el = A_6 (38b)

A12 = 2Ell hn sin4el (38c)

The extensional modulus of the stiffeners is El l, h is the skin thickness, n is the stiffening

parameter that reflects the stiffener spatial distribution and pattern. Equations (38) are valid for

balanced pairs of stiffeners oriented at angles of:/: el.

Thc stiffening parameter n is def'med as

n = Al / Pl h (38d)

The cross sectional area of an individual stiffener is Al and Pl is the pitch or distance between

parallel rows of stiffeners. The stiffener orientation angle is 01 as shown in fig. 13.

By virtue of high aspect ratio wing geometry, the chordwise stress resultant Nyy is quite small
and will be ignored. Thus

Nyy = 0 (39)

This permits the equations to be reduced. The results are

£yy = - (AI2 / A22) £xx (40)

Nxx = Kll £xx (41)

where Kll = All - (Al 2)2/A22 (42)

The effective extensional membrane stiffness is Kll. The effective Poisson's ratio, which is

related to camber, is (Al2 / A22).

It remains to relate the lift on the airfoil section to the elastically produced camber deformation.
The incremental contribution to the section lift coefficient due to elastic camber may be exp_d

as (eq. (A-8), Appendix A)

Act = G(H/2) W,c (43)

This equation is based upon linear two-dimensional thin airfoil theory. The factor G is a geometric
factor that depends on the cross sectional shape, structural box dimensions and overall section

dimensions. It is given in eq. (A-10), Appendix A. Note that the factor (H/2) _ is simply the
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maximum chordwise bendin_ strain.

kinematic parameter is kc.s.

For uniform cover properties, the only camber curvature

kc5 - AI2 / A22 (44)

The bending strain is related to the section rotation as follows

13y.x= -2_ / H (45)

where e is the maximum swain level for bending with the upper fibers in compression (upwardly

convex spanwise bending of the wing). Thus, from eqs. (31) and (43) - (45)

ACt = G(AI2 / A22) £ (46)

Equation (46), although simple in form, conveys a significant amount of physical information.
The factor G contains all of the geometric information about the section which includes the
structural chord (CG),the aerodynamic chord (CA), and the airfoilthickness or structural box depth
(H). The effective Poisson's ratio (A12 / A22) enters in direct proportion to the increment in
section lift coefficient. Thus, maximizing Poisson's ratio will maximize the section lift coefficient.
The allowable strain level is actually a material property. Clearly, there are lift benefits to selecting
a material system with a high strain-to-failure.

Design Analysis - Bending Method

A design analysis algorithm has been created for evaluating the benefits of tailored camber. An
allowable strain level for bending related response and a distributed axial loading in the covers are

assigned initially. The running axial cover stiffness can be directly estimated.

K 11 = Nxx / e (47)

i

The distributed running load in the cover is Nxx. The strain level e is the allowable spanwise

bending strain.

It is convenient to define the membrane stiffness per unit skin thickness kll as

kll = Kll / h (48)

This stiffness parameter may be calculated directly from lamination theory and a knowledge of the
stiffener pattern. It permits the skin thickness to be evaluated as

h = Nxx / kll e (49)

An appropriate measure of structural weight for configurations fabricated from one material is the
equivalent smeared thickness of skin and stiffeners denoted h'. It is

h' = h(1 +2n) (50)

This equation is based upon a balanced stiffener spatial distribution and pattern.

The incremental contribution to the section lift coefficient due to elastic camber may be

estimated directly from eqn. (46).
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Thedesignanalysisproceedsasfollows:

1. A configurationis selectedandkll is determined;

2. The skin thickness is found using eq. (49);

3. The lift coefficient contribution is calculated using eq. (46);

4. The weight related measure of the lift created is evaluated from the parameter

Act / h'

5. Parametric and optimization studies can be conducted based upon the lift created (eq. (47))
or lift per unit of structural weight (step 4).

In attempting to optimize the aerodynamic benefits, we have found that there are two optimum
designs that are of interest. These are a "weight" optimum which corresponds to the maximum lift
per unit structural weight. There is also a "lift" optimum that corresponds to maximum absolute
lift. Experience indicates a large weight penalty accompanies the transition from weight to lift
optimum designs.

Results and Discussion

Benchmark Wing Cover Design

A benchmark configuration was created and analyzed for which no effort was made to create

elastically produced camber. This configuration carries the design level bending strain and utilizes
AS4/3501-6 graphite-epoxy as a material system. The stiffeners are unidirectional and oriented at

[0] degrees to the wing beam axis. The skin is composed of only [-1-45] plies.

The overall level of stiffening remains comparable (but not necessarily equal) in all designs.

Also the design extensional strain level e is taken as 4500 microinches per inch. The applied

running load Nxx is set at 25,000 pounds per inch, a value consistent with the center wing of a

large transport.

Bending Method Design Study

A sampling of design results is presented in figs. 14-19. They are based upon C-130 overall
dimensions (fig. 12) and AS4/3501-6 graphite-epoxy properties. Results appear in fig. 14 for an
unstiffened design. An optimum fiber orientation for unidirectional material is found to be

approximately 26 degrees.

These results are put in perspective by the information presented in fig. 15. Curves
corresponding to four levels of stiffening illustrate clearly how effective balanced stiffeners are at
enhancing Poisson effects. Values of n corresponding to 0.0, 0.5, 1.0 and 1.5 are associated with
skin only and light, medium and heavy stiffening, respectively.

A fully weight optimized design is represented in fig. 16. This was determined with the aid of

the commercially available computer program "Eureka" (ref. 11). A maximum value of Act / h' is
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obtained which, in this instance, corresponds to stiffener orientations of approximately 15.6

degrees.

A design based upon maximizing the total lift appears in fig. 17. A maximum value of Act is
obtained which, in this instance, corresponds to stiffener orientations of 20.8 degrees. Note that

the weight optimum design (WOD) is different from the lift optimum design (LOD).

Our studies indicate that the total lift produced by the WOD is lower than for the LOD. The
additional weight required to increase total lift above the WOD level may be substantial, however.

It appears that efforts to produce weight efficient designs are warranted.

Another intuitive design concept is one in which the orientation of the unidirectional skin plies
and the stiffeners are the same. This Mequal angle design MlEAD) concept is appealing because of

its simplicity and relative case of fabrication.

Equal angle design results are presented in figs. 18 and 19. A WOD analysis appears in fig.
18. These results compare favorably with those in fig. 16. In Fig. 19 a LOD analysis is shown.

These results must be compared to those of fig. 17. The EAD concept yields results which are
practically indistinguishable from fully optimized designs.

Optimal values for the bending method designs are presented in table 3. The results
correspond to n = 1.5, which is considered to be heavy stiffening. It is to be noted that the section
lift coefficient increments for both the weight optimum design 00VOD) and lift optimum design
(LOD) are large enough to be of practical interest. As a reference, the basic lift contribution due to
angle of attack from linear thin airfoil theory is

Act = 0.110 a (51)

where or, the angle of attack, is given in degrees.

The transition from the WOD to the LOD corresponds to an approximate increase in section lift
coefficient of 18 percent. The weight increase, however, is 56 percent. Thus, as mentioned
earlier, a substantial weight penalty is required for the additional lift. Also, the two designs

correspond to l.otally different configurations.

Even though no effort was made to produce elastic camber with the benchmark design, there is
a small contribution due to anticlastic curvature. The transition from the benchmark design to the

WOD corresponds to an increase of 234 percent in section lift coefficient for a weight increase of

only 11 percent. This suggests that elastic camber tailoring is weight efficient.

Concluding Remarks

The design studies provide valuable information. Perhaps the most significant finding is that
WOD and LOD configurations are distinct and that heavy weight penalties are associated with
obtaining lift above the WOD level. It appears that the lift enhancement obtainable by elastically
tailored camber is large enough to be of practical significance.
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DESIGN ANALYSIS METHODOLOGY - TWISTING METHOD

Preliminary Remarks

As indicatedearlier,the twisting method of creating camber deformations requires unbalanced

cover configurations arranged in a globally circumferentially asymmetric structure (fig. 5). Apart
from these differences, the models and analyses parallel those described earlier for the bending
method.

Basic Configurations - Twisting Method

The upper and lower covers are identical and arranged in a manner that we have earlier called a
circumferentially asymmetric configuration. This type of configuration produces bending-twist
coupling in addition to the camber studied here. Figure 20 shows the arrangement of the covers.
The fiber orientation indicated in the figure corresponds to the dominant off axis fiber direction.

The stiffeners are taken to be unidirectional configurations as before. Also, [0]-degree

stiffeners parallel to the beam axis may be added for structural efficiency. These stiffeners enhance
overall bending stiffness without affecting the camber creating mechanism. A single stiffener

orientation angle 01 and a single skin fiber orientation angle 0o are considered.

For membrane behavior in the covers

Nxx = All £xx + A12 £yy + AI6 _xy

Nyy = A12 £xx + A22 £yy + A26 'Yxy

Nxy = A16 £xx + A26 £yy + A66 '_xy

As before we write the stiffnesses in the form given in eq. (36).

pattern, however, the stiffness contributions due to the stiffeners are

(52a)

(52b)

(52c)

For this unbalanced stiffener

A_ 1 = E_ l hn cos4Ol

A_2 : E_I hn sin2Ol cos2el : A_6

A_6 = E_t hn sin01 cos301

AI2 = E_ 1 hn sin401

Al_6 = E_ 1 hn sin3el cos01

(53a)

(53b)

(53c)

(53d)

(53e)

In addition, from eq. (39)

£yy - -(A22) "1(Al2 £xx + A26 _/xy) (54)

This equation is the basis for camber prediction.

With the aid of eq. (54), eqs. (52) may be reduced to two equations in terms of the two

membrane strains_xxand 7xy.
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Nxx -- KII £xx + K12 '_xy

Nxy = KI2 £xx + K22 Yxy

The membrane stiffnesses Kij for uniaxial conditions are

KI1 -- All - (AI2) 2 / A22

KI2 = AI6- A12 A26/A22

K22 - A66- (A26) 2 / A22

(55a)

(55b)

(42)

(56)

(57)

As the effects of smeared stiffeners are included in the Aij stiffnesses, this is a generalization of the
expressions used in refs. (5-7). These equations are, therefore, valid for a wide class of stiffened
structures.

For uniform cover properties, there are two camber curvature kinematic parameters---kc5,
given by eq. (44), and kc4. The latter is

Therefore, from eq. (31)

kc4 = - A26 / A22 (58)

Kc = (A26 / A22) _,x - (AI2 / A22) 13y,x (59)

We also have the relationship

Txy = " 2_"_b,x =(K22) "1 (- q - K12 £xx) (60)

The shear flow in the closed box is q (positive counterclockwise). It seems more appropriate to
work with shear flow than shear strain as it is within a definite range for transports. Therefore,

with 13y,xgiven by eq. (45)

= (2 / H) (C12 £ + C26 q / K22) (61)

The parameter Cl 2 is an effective Poisson's ratio is given by

C12 = A_22 -A26 Kl2 (62)A22 K22

The parameter C26 characterizes the coupling between twist and camber. It is

C26 = A26 / A22 (63)

Consequently, in place of eq. (46) we have the relationship

ACt = C_C12 £ + C26 q / K22) (64)
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This result permitsthe increment of section lift coefficient to be evaluated for these unbalanced

configurations.

Results and Discussion

Twistin_ Method Design Study

A design analysis algorithm that is similar to that described for the bending method has been
utilized to explore the camber-twist mechanism. In all of our studies, the shear flow q has been
taken as 5000 lb./in. Material properties, as before, correspond to the AS4/3501-6 graphite-epoxy

system (table 2). The essential differences in methodology consist of the use of eq. (64) to
evaluate the increment in section lift coefficient and the following expression for the effective

thickness of skin and stiffeners:

h' = h(l+n) (65)

This equation accounts for the unbalanced stiffener configuration (fig. 20).

A sampling of design results are presented in figs. 21-27. Results appear in fig. 21 for C26,

the parameter that directly measures the extent of twist-camber coupling, for an unsfiffened design.
An optimum fiber orientation for unidirectional material is found to be approximately 37 degrees.
These results are put in perspective by information presented in figs. 22 and 23. Heavy stiffening
corresponding to n = 1.5 has been assumed throughout for the stiffened configurations. These
figures show that the maximum twist-camber coupling occurs for a fiber orientation of 30-45
degrees for the skin and a stiffener orientation of 24-34 degrees.

When all of the factors in eq. (64) are taken into account for the lift coefficient calculation, the
situation is different. A weight related measure of the lift created is evaluated from the parameter

(Act / h'). This parameter appears in figs. 24 and 25. Clearly the "best" stiffener orientation is

zero degrees (spanwise) and the skin fiber orientation is between 30-45 degrees.

An absolute measure of lift per unit span, (Act / h'), appears in figs. 26 and 27. The stiffener

orientation for maximum lift is zero degrees. The "best" fiber orientation for the skin is

approximately 45 degrees. As reported earlier, the weight optimum design differs from the lift
optimum design.

Optimal values for twisting method designs are presented in table 4. The absolute section lift
coefficient increments achieved by this method are somewhat less than for the bending method.

They are large enough to be of practical interest and the corresponding weights (thicknesses) are

less. On the basis of the parameter (Act / h') (inches-l), the twisting method gives 0.295 in.-1 and

the bending method yields 0.299 in. -1 for a weight optimal design. Therefore, on a relative basis,

the two methods are competitive.

If absolute lift is important, the twisting method is more efficient. Twisting method designs
and bending method designs correspond to entirely different configurations, however. There are,
therefore, manufacturing factors which would enter into the decision of which method to adopt.
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Concluding Remarks

The optimum lift parameters obtained from these designs are comparable to those found earlier
for the bending method. It would appear, therefore, that the additional complexity of unbalanced
designs should be avoided and the former mechanism utilized. This suggestion, however, pertains
only to camber effects. Since spanwise bending-twist coupling is also present for the unbalanced
designs, its influence must be accounted for in making an overall assessment.

EXPERIMENTAL EVALUATION OF

TAILORED WING BOXES

WITH ELASTICALLY PRODUCED CHORDWISE CAMBER

Introductory Remarks

In this section, some of the unique considerations that are associated with the experimental
evaluation of chordwise deformable wing structures are addressed. Since chordwise elastic camber

deformations are desired and must be free to develop, traditional experimental methodology cannot
be used. An experimental methodology based upon the use of a flexible sling support and load
application system has been created and utilized to evaluate a model box beam experimentally.

Experimental Methodology

Attention is restricted to the bending method of creating elastically produced chordwise camber
deformation. This method produces an intentionally exaggerated form of anticlastic chordwise
curvature, which is a natural response to spanwise bending. The key to successfully using this
approach is to create large effective Poisson's ratios in the wing box covers while preserving the
essential integrity of the box cross section.

The "best" test to perform in order to evaluate and validate camber production experimentally is
a four-point bending test. This test method creates a gage section in the specimen that is exposed to
a pure spanwise bending moment only, a simple state of loading that isolates the desired effect of

anticlastic curvature. The challenge, of course, is to create a way of performing the test that utilizes
methods of load application and support that permit chordwise camber deformations to occur

Test Specimen Design

The box beam test specimen (fig. 28) has been designed with three factors in mind. First, due

to the dimensions of our laminating press, the box covers are limited to a maximum length of
twenty inches. The cover layup is taken to be [:!:26] in keeping with our optimized design without
stiffeners (fig. 14). Second, to prevent the covers from buckling under the four point bending
loading, a cover width of four inches and a thickness of twelve plies has been selected. This also is
in concert with the third factor, which is to produce measurable strain levels.

To prevent the covers from buckling, it is necessary to predict the buckling load of the box
beam covers. The bending stiffness of the beam was determined using the cross sectional geometry
of the box and material properties of the laminate and aluminum channel. Two methods have been

used to calculate the buckling load of the box covers and the results compare well with each other.
The properties of AS4/3501-6 graphite-epoxy have been used in the design analysis for the covers
(table 2).
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The first method used was to derive the buckling equations for an orthotropic plate with two

opposing edges fixed and two opposing edges simply supported opposing ends. A closed form
solution for a buckling problem with these boundary conditions does not exist, so the
commercially available numerical solution program "Theorist" (ref. 12) was used to solve for the
determinant of the buckling equation. This solution yields a buckling load of 1,016 lbs, which in

turn relates to a strain level of 1,5651.t _:. The second method used was to determine the ratio of

buckling loads for a simply supported isotropic plate to that of a fixed-fixed, simply supported
isotropic plate with the same aspect ratio. This factor was then used to determine the buckling load
of the orthotropic fixed-fixed simply supported plate from that of a simply supported on all sides

orthotropic plate. The resulting buckling load and strain level were determined to be 1,102 lbs. and

1,701 _, respectively. Thus, in view of the approximate nature of the second method, the results

compare rather well.

Experimental Methodology

A number of possible approaches for performing the four-point bending tests were devised and
thoroughly evaluated. With the help of Dr. Damodar Ambur of the NASA Langley Research
Center, the "Sling Supported Method" was selected for implementation. Figure 29 illustrates this
approach in schematic form. An attractive feature of this method is the fact that the entire assembly
is placed in the hydraulic grips of our 75 kip MTS universal testing machine and pulled in tension.
The flexible slings of nylon strap material are used to both support the test specimen and apply the
four-point loading. This concept would seem to provide minimal resistance to the elastically

produced camber deformations.

In addition to testing the wing box, a series of component and coupon tests and a detailed finite

element analysis of the fixtures were performed. Measured property data on coupon tests were
used for correlating the test results with theory in the second method of camber correlation, which
is discussed subsequently.

All specimen response measurements were made with resistance strain gages. While
displacement measurements would have been u_ful, the floating nature of the test setup makes
them extremely inconvenient and potentially unreliable. A diagram showing the strain gage
nomenclature and locations appears in fig. 30.

Results and Discussion

Basic Strain Gage Data

Strain gage data appear in figs. 31-33 as functions of applied bending moment. Figure 31
shows data from the chordwise strain gages. The zero reference line is provided because, in a

theoretically perfect test, the top and bottom gage readings should be symmetrically located about
this reference line.

Data from the two spanwise centrally located gages appear in fig. 32. Again the zero reference

line is provided. Ideally, the two gages should read the opposite of each other.

Data from the two outer or remote spanwise gages mounted on the bottom surface are

presented in fig. 33. These data were used, together with turnbuckle adjustments, to balance out
the load application system with a small amount of preload applied. Theoretically, if the test
conditions were ideal, the data from these two gages would be identical. This would correspond to

perfect four-point bending conditions.
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The above test results suggest that the objectives of the experiment were met, and the behavior
reflected is as anticipated.

Of particular interest is the ability of the structure to produce global chordwise camber
curvature. This capability was optimized for the box covers with the [:I:26] ply layup for
AS4/3501-6 graphite-epoxy. Several basic relations are needed to interpret the measured data.

Elementary Mechanics Model

The first relationship involves the spanwise curvature and membrane strains in the box. Let "1"
denote the spanwise direction and "2" the normal chordwise direction. If the usual Bemoulli-Euler
assumption, which is valid under pure bending, is adopted, we can write

K11-- Spanwis¢ Curvature = (Etll . £_l_/(H+h) (66)

where Kl_ is the spanwise curvature, e_l is the spanwise membrane extensional strain, H is the

depth of the box, h is the cover thickness and the subscripts "t" and "u" refer to the lower and
upper covers of the box, respectively.

The second relation provides the elastic law relating spanwise curvature and bending moment.
It is, in the notation of ref. 5,

_:11 = $55 My (67)

The spanwise bending moment is My, and 555 is the spanwise bending compliance. It is related to
the stiffness, C55, as follows (ref. 5)-

S55 = (C55)1 (68)

and

C55 = Spanwise Bending Stiffness

= 2Cs K II + 2(ElJe

(69)

In eq. (69), Cs denotes the structural chord or width of the box, (EI)c is the bending stiffness of
the aluminum closure channel (fig. 28) about d chordwise parallel axis, and KH is the spanwise
extensional stiffness of the box covers. For balanced cover configurations and uniaxial stress
conditions

£22 -" (A12 / A22) £11 (40)

The ratio (AI2/A22) is the effective Poisson's ratio for the laminated covers.

From classical BemouUi-Euler bending theory

K22 E Ko the Camber Curvature

-- (AI2 / A22) Kll (70a)

= (AI2 / A22) $55 My (70b)
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= (70c)

Equation (70c) is analogous to eq. (66), and E22 is the chordwise extensional membrane strain.
Consequently, we define the camber bending compliance such that

I¢c= Scs My (71)

and the camber compliance is

Sc5 - (A12 / A22) $55 (72)

Camber Correlation

The most desirable way to correlate theory and experiment is to use me,_ured pro_rties on the
actual test s_cimen itself in the theoretical calculauons. This is because there is batch-to-batch
variation in ¢:omposite materials themselves and some amount of variation from part-to-part due to
processing. This is normal for composite structures and is accounted for by using the allowable
properties used in structural design and analysis. Our purposes here, however, are to evaluate (1)
actual versus theoretical elastic camber production, (2) the suitability of the test methodology, and
(3) the validity of the model that has been created for use in design analysis. With these objectives
in mind, our correlation study proceeded in a direct manner along two paths.

The first path or method is based upon using the experimentally determined spanwise bending
compliance as the wing box cover primary load-bearing elastic characteristic. This compliance is
readily determined from the plot of experimental data shown in fig. 34. This figure is based upon
the use of eqs. (66) and (67). The measured spanwise bending compliance, $55, together with the
theoretical value of the effective Poisson's ratio of 1.26 and eq. (72) permits an estimate of the
camber compliance to be calculated. This value is compared with the experimentally determined
one obtained from fig. 35 in table 5. The "experimental" value is based upon exls. (70c) and (71).

While the agreement reflected in table 5 is excellent, another way of interpreting this
information is that (At2/A22) can be found experimentally from measured compliances (figs. 34,
35) and eq. (72). This yields an effective Poisson's ratio of 1.27, which is in good agreement with
the value assumed in the design analysis (1.26).

The second method presumes that the box specimen is imperfect. Both the chordwise and

spanwise strain gage data taken during the four point bending test (figs. 31, 32) suggest that a
small mean spanwlse strain is present. The test w_ repeated with the specimen position reversed

with respect to sling support and loading system. The results were identical to the first test
indicating that the spectmen and not the test setup was responsible for the lack of symmetry of the
data about the reference lines.

In keeping with our approach of using measured properties on the actual test specimen in the
theoretical calculations for evaluating the adequacy of our model, a second type of test was
conducted on the box specimen. T he ends of the box were machined to be flat and parallel, and a
compression test was conducted with the box fiat-ended between the testing machine platens.
Strain gage data were taken as a function of applied compressive load. These data permitted the
extensional stiffness Kll and the equivalent imperfection of the specimen to be evaluated.

Our imperfect model of the specimen presumes that (unwanted) bending-extension coupling is
present in the box specimen. This coupling is due to manufacturing irregularities in the box such
as differences in the covers or lack of parallelism of the closure channels. As a consequence, there
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is a mean extensional strain _lt present in the four point bending test.
evaluated as

This mean strain is

_,, = (=z],, _,)/2 (73)

With the bending-extension coupling present, we have the equations

_ll = Sll N + Sis M (74a)

g:11 = Sis N + $55 M (74b)

In the four point bending test, the axial force N is zero. Consequendy, from eq. (74a)

= SisM (75)

A plot of thisequation isgiven in fig.36. The bending-extension coupling compliance Sis,

therefore,isdetermined from thisfigure.Note thatthiscompliance isa small negativevalue (-

0.079 in-lbs-l).

In thefiat-endedcompression test,thebox specimen experiencesan appliedcompressive force

No and an unknown bending moment. This bending moment correspondsto thecompressive load

No being applied at a distance e from the central geometric axis. This situation is described by the
equations

ell = -(Sll + e SIS) No (76a)

!cl l = - (Sis + e $55) No (76b)

Figures 37 and 38 contain plots of these equations obtained from compression test data. With $55
and $15 previously determined from the bending test, these figures permit the extensional
compliance Sl_ and the load eccentricity e to be evaluated. The results are:

Sll = 0.161 x 10"6 (lb) "1and e = 0.023 in.

From elementary rule of mixtures considerations, we write

C 11 = 2C= K 11 + 2 (EA k (77)

The mean cover stiffness is KI 1 and (EA)c is the extensional stiffness of the closure channels. By

analogy with the parameter 6, we introduce the coupling parameter y det'med such that

2 / S55=(C15)2/Cll C55 (78)

The magnitude of this parameter is a convenient measure of the unwanted bending - extension
coupling. It has the value 0.046 for the box specimen, thus indicating only a small degree of
imperfection. The inverse of eqs. (74) is

N = Cll _ll + C15 Xll (79a)

M = C15 _11 + C55 xlt (79b)
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where

clt =[Sll 1

C15 - - 'Y/S15(1-_/)

c. =ts.] (l-r)

(80a)

(SOb)

(80c)

The mean cover stiffness K11 is determined with the aid of eqs. (77) arid (80a). The bending

stiffness C55 is found from eqs. (80c) and (69).

The correlation of theory and experiment by this second method requires that the coupling

parameter y and the measured mean cover stiffness KI t (0.521 x 106 lb.) be used in the theoretical
calculations. If this is done, the correlation of spanwise bending compliance predictions and
experimentally determined values can be made. The results appear in table 6. A similar correlation
for chordwise camber compliance is given in table 7. These comparisons show excellent

agreement between our model predictions and the experiments.

Concluding Remarks

In this section, we have addressed the unique considerations that are associated with the

experimental evaluation of chordwise deformable wing structures. Since chordwise elastic camber
deformations are desired and must be free to develop, traditional experimental methodology cannot

be used. An experimental methodology based upon the use of a flexible sling support __andload
application system has been created and utilized to evaluate a model box beam experimentally.

Experimental data correlates extremely well with design analysis predictions based upon a
beam-like model for the global properties of camber compliance and spanwise bending compliance.
Local strain measurements exhibit trends in agreement with intuition but which depart slightly from

theoretical perfection in terms of upper and lower cover asymmetry. This behavior has been
explained by accounting for unwanted bending-extension coupling present in the box specimen,
which was quantitatively evaluated by performing an additional compression test and appropriately
analyzing the data.

Overall, a solid basis for the design of box structures based upon the bending method of elastic

camber production has been confirmed by the experiments.

Since the agreement between finite element simulations and the beam-like predictions is
excellent and the correlation with experiments is very good here, we consider that the design of

high aspect chordwise deformable wings by utilizing the bending method of producing camber is
on firm ground.

CONCLUSIONS AND RECOMMENDATIONS

Structural models and design analysis methodology have been created for composite prima.ry
aircraft structures that are appropriate for the preliminary or conceptual phase of design. Emphasts

has been given to high aspect ratio wings and the potential of aeroelasdc tailoring to enhance lift
production. This research focuses upon understanding, modeling, tailoring mechanisms and
creating design concepts that accentuate individual behavioral characteristics. As the roles of wing
bending and twisting deformations are rather well understood, attention has been directed to
elastically produced chordwise camber. A scientific understanding of behavior and design
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concepts which accentuate camber producing deformations are presented and applied to a generic
transport wing.

Modeling has been validated by extensive finite element simulation (Appendix C) and by
selected experiments on a model box beam specimen. All of the results confirm the validity of the
thin-walled composite beam model of Rehfield (refs. 5-7) as it has been extended herein to predict
in-plane warping displacements. ConsequenOy, we believe that the modeling and design analysis
methodology that has been created can be applied with a high degree of confidence to high aspect
ratio wing structures without significant discontinuities.

Summary of Accomplishments

While earlier work by others clearly showed the potential of elastic tailoring, primarily in the
context of low aspect ratio plate-like lifting surfaces and the X-29 Technology Demonstrator, it
remained to establish a firm grasp of the cause-effect relationships between configuration and
response, to clearly identify the parameters which control the tailoring process, and to establish a
rational design methodology for future applications. A synopsis of the original contributions of the

research follows. The contributions logically fall into two natural categories---"modeling, design
analysis, and structural concepts" and "experimental methodology development."

Modeling. Design Analysis and Structural Concepts

Created modeling technology for thin-walled composite beam structures which includes all
essential nonclassical effects and chordwise deformation modes.

Isolated and identified distinct elastic coupling mechanisms and the parameters which
influence them to establish a basis for design and understanding.

Created a technology for elastically producing camber in wings, applied it to transport wings
and demonstrated significant lift enhancement.

• Developed structural concepts for chordwise deformable wing ribs (Appendix D).

Demonstrated the efficiency and effectiveness of grid stiffened configurations for elastic
tailoring applications.

Created two-dimensional aerodynamic modeling approaches for steady flow around
chordwise deformable airfoils (Appendix A).

Discovered distinct "weight" and "lift" optimum designs.

Created and applied new section models for wing box structures (Appendix B) and a "typical
section" model for aeroelastic studies (Appendix F).

Correlated mechanics model predictions with extensive finite element simulations (Appendix
C).

Performed an exploratory static aeroelastic instability study for chordwise deformable wings
(Appendix E).
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Experimental Methodology Development

Developed an experimental methodology for bending testing of chordwise deformable box
structures, applied it to a model box beam, and correlated the experimental results with
theoretical predictions.

An entire area of research and application -- chordwise deformable wings m has been defined

and developed. A foundation of appropriate models, structural design methodology and design
concepts have been created and presented which offer new options for future aircraft. It ap.pears
that lift enhancements of sufficient magnitude can be produced to renoer this type of wing tatloring

of practical interest, and the basic understanding and design analysis methodology now exist to
explore the potential of these ideas.

Recommendations for Future Work

This project, in our opinion, has been very successful. Our bending-related camber producing
concept has been thoroughly evaluated by design analysis, extensive f'mite element simulation and
carefully designed experiments. It is ready for a "real world" evaluation.

Below is a list of tasks that we believe should be completed to carry us toward the ultimate goal

of an Advanced Technology Wing.

• Understand the interaction of wing elastic camber, twist and bending;

• Understand the interaction of wing sweep and elastically tailored deformation modes,

camber in particular,

• Create technology for "smart" adaptive control to be used in conjunction with elastic

tailoring;

• Study performance-related advantages of advanced technology wings;

• Understand the aeroelasticity of advanced technology wings;

• Understand, design and predict damage/failure processes in gakglgngg_ laminated

composite structures;

• Develop material selection criteria for elastic tailoring applications;

• Understand and predict residual processing effects in elastically tailored configurations; and

• Create scaling laws for subscale models.
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Er.amrzx Ratar__B.lad 

Extensional Stiffness, Cll (lb)

Spanwise Bending Stiffness,

Cs5 (Ib-in 2)

Torsional Stiffness, C44 (Ib-
in 2)

Effective Chordwise Bending

Stiffness, (C66)sFr (Ib "in2)

Chordwise Transverse Shear

Stiffness, C22 (Ib)

Extension-Twist Coupling
Stiffness , C14 (Ib-in)

Bending-Transverse Shear
Coupling Stiffness, C25 (Ib-in)

0.8332 x 106

0.1337 x 105

0.9747 x 104

0.0806 x 106

0.1651 x 106

-0.6294 x 105

0.3147 x 10 s

Matched

Matched

Matched

Matched

0.1519 x 10 6

-0.6309 x 105

0.3153 x 105

TABLE 1. - COMPARISON OF IDEAL TAILORED BOX MODEL TO ACTUAL
LANGLEY ROTOR BLADE

FIBER DIRECTION TENSION MODULUS, E11 (MSI)

TRANSVERSE DIRECTION, TENSION MODULUS, E22 (MSI)

IN-PLANE SHEAR MODULUS, GI2(MSI)

POISSON'S RATIO, Vl2

20.0

1.7

0.85

0.30

TABLE 2. -NOMINAL UNIDIRECTIONAL MECHANICAL PROPERTIES FOR

AS4/3501-6 GRAPHITE - EPOXY (ROOM TEMPERATURE, DRY)
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LIFT OPTIMUM

WEIGHT OPTIMUM

BENCHMARK

ACt

0.138

0.117

0.035

h' (IN.)

0.610

0.391

0.353

TABLE 3. - OPTIMUM VALUES - BENDING METHOD (n - 1.5)

LIFT OPTIMUM

WEIGHT OPTIMUM

BENCHMARK

ACt

0.125

0.109

0.035

h' (IN.)

0.429

0.369

0.353

TABLE 4. - OPTIMUM VALUES - TWISTING METHOD (n = 1.5)
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CAMBER COMPLIANCE

(LB-IN2) "1 x 106

PERCENT DIFFERENCE

1.075

EXPERIMENT

1.080

0.5

TABLE 5. - CAMBER CORRELATION-METHOD 1

SPANWISE BENDING

COMPLIANCE

(LB-IN2) "l x 10 6

PERCENT DIFFERENCE

0.82

EXPERIMENT

0.85

3.7

TABLE 6. -SPANWISE BENDING CORRELATION-METHOD 2
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EXPERIMENT

CAMBER COMPLIANCE

(LB-IN2) "! x 106

PERCENT DIFFERENCE

1.03 1.08

4.9

TABLE 7. ° CAMBER CORRELATION-METHOD 3
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APPENDIX A

AERODYNAMICS OF WINGS WITH ELASTICALLY PRODUCED CAMBER

A wing can be divided into finite airfoil sections. These sections are commonly categorized
by three aerodynamic quantities: nondimensional lift, pitching moment, and drag. Symbolically
they are ct, Cm, and Cd. Thin airfoil theory is used in this study to calculate aerodynamic
coefficients. One assumption of thin airfoil theory is that the flow is inviscid, therefore Cd is not
calculated. It is the viscosity of the fluid that produces skin friction drag and three-dimensional

flow patterns that are responsible for lift induced drag.

For a given value of ct the corresponding lift per unit span is given by

L = ct (112) p** (V..) 2 CA (A-l)

This equation shows that lift is directly proportional to velocity squared. For the safety of
passengers and aircraft, it is desirable to have as small a V.. during take-off and landing as is
possible. This means design an airfoil with a large C-t,max. The maximum nondimensional lift
coefficient is influenced by both the thickness distribution along the airfoil and the curvature of the
mean camber line. For an aircraft designed to cruise at speeds close to Mach one, a thick airfoil

section and large curvature lead to unacceptably high drag.

Another aerodynamic quantity that is of interest is the nondimensional pitching moment, ca,.
This is used to quantify the amount of pitching moment an airfoil section produces. It is common
to record this value at the quarter chord location of an airfoil, Cm,o¢4-

Thin Airfoil Theory

Thin airfoil theory is used in this study because it allows for an understanding of the problem
through a closed form solution which yields reliable results (refs. A-1 and A-2). This method of
analysis models an airfoil as a streamline of the surrounding flow by the use of a vortex sheet

placed along the airfoirs chord line. The vortex sheet has a variable strength represented by ¥.

Once the distribution in y along the vortex sheet is determined, the lift and pitching moment of the

airfoil can be calculated.

The fundamental equation of thin airfoil theory, equation (A-2), states that the camber line of
an airfoil is a streamline of the surrounding flow.

(A-2)

The free stream velocity is V., ot is the airfoil angle of attack to the free stream flow, z is the
vertical distance of the mean camber line above the chord line, and dz/dx is the slope of the airfoirs

mean camber line. For the present purposes, x is the chordwise coordinate. To aid in the
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integration substitute for the dummy variable _, _ = (c/2) [1 - cos (0)] and dE = (c/2) sin (0) dO.

The bounds of integration become 0 to _. The solution to (A-2) is

7(0)=2V. Ao l+cOs(o) + A_sin(n0 . (A-3)

si.(o) _-
Substituting(A-3) into equation (A-2) and solving yields a Fourier cosine series. The coefficients
of this series are

I"Ao = a - I dz d0o (A4)
dx

and

An= _°os(oOo)dOo,(o=i, _,3....> (_-_>

The parameter 0o is a dummy variable of integration.

Once the Fourier coefficients have been determined, and the substituted into equation (A-3),
the nondimensional lift and pitching moment coefficients can be determined. They are (ref. A-I)

ct= _ (2Ao + At) (A-6)

and

Cm,c^/4 = _ (A2 -At) (A-7)

If the Fourier coefficientsAo, At, A2 arc determined for the case of a centrallylocated

structuralwing box, where the leadingand trailingedges arc of the same length,equation (A-6)
and (A-7) become

ce= 2_a+ G(_) (A-8)

and

= -81-GH)Cc (A-9)Cm.cH4

where G isa coefficientthatdepends on thegeometry of thewing crosssection.

G = + 2sin 01 (A-10)

and
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e,-- (A-II)

For our study,the dimensions fora C-130 wing were used,and G equals 10.349.

To solve forthe coefficients,the slopeof the camber lineover the lengthof the chord needs

to bc def'med.This requiresthederivationofan equationfortheslopeof a deformable camber line
which isa functionof the structuraldimensions and loadingconditionsof the wing being studied.

For our initialstudy,thechord lineof thestructuralbox was assumed to deform intoan arcwith a

radiusofconstantcurvature.The leadingand trailingedges arenonstructuraland thereforedo not

deform inshape. They simp.lyrotatealong with the structuralchord such thatthe rotationsof the
chord linesmaintaingeometriccompatibleatalltimes.

A briefexplanation of the solutionprocedure for the calculationof the liftand pitching

moment coefficientsispresentedhere. The detailedanalysisand procedurearc given inref.A-3.

I) Determine the radius of curvature of the wing's structuralbox for a specified

loadingand allowablestrainlevel.
2) Calculatethe slopesof the leadingedge, trailingedge and structuralbox camber

lines.

3) Solve equations (A-4) and (A-5) for the Fourier SeriesCoefficientsAo, Al, and

A2.

4) Use equations (A-6) and (A-7) to determine the nondimcnsional liftand pitching
moment coefficients.
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APPENDIX B

PROPERTIES OF THE IDEAL TAILORED
BOX MODEL

The Ideal Tailored Box model shown in fig. 7 consists of load bearing covers with webs
which are infinitely stiff in transverse shear. This idealized configuration possesses chordwise
structural symmetry about the geometric center of the structural box with structural chord c,. In
addition, the load bearing covers have distinct uniform properties. The elastic properties of this
simple model are readily evaluated in closed form. As indicated earlier, the suggested approach for
model-structure correspondence is intended to be used with this model.

The following convention is adopted: superscripts "u" and "1" identify properties of the
upper and lower covers (fig.7), respectively. The nonzero direct stiffnesses are Clt, C22, C33
(infinite), C_, C55 and C66. The nonzero coupling stiffnesses are Ct2, C14, ClS, C24, C25 and
C45. All stiffnesses are evaluated using equations (16). The results are

CII-(KI_I +Klll)Cs (B-l)

(B-2)

c,,-(Ky_+K_,)c,n (B-3)

c,,=(K_x- K;,)c,H/2 (B-4)

c_,=(K_+K_,_)c, (B-5)

c=,=(-K_+K_,,)c,I-I (13-6)

c=,=-(Ky=+K'_)c../2 03-7)

C33--')_ 03-8)

C44 --(K_2 + KI2)csH 2 03 -9)

c,,- (K_=- K;_)c,H_/2 (B-IO)

c,, =(K_,+I_;,)c,l-i=/4 (B-11)

C66 =(KIt + K_,)c3/12 (13-12)
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APPENDIX C

FINITE ELEMENT CORRELATION

The design analysis model is beam-like and based upon ref. C-I. In order to verify that the
engineering assumptions of this elementary type of theory are valid, a correlation study has been
undertaken. Benchmark configurations have been selected, analyzed by elementary theory and

modeled and analyzed by the finite element method for the loading case of pure bending. Finite
element correlation studies have been conducted for two similar structural box configurations. The

first is the box shown in Fig. C-1 with the laminated composite covers bonded to the channel
sections. The second is an otherwise identical box with the covers bolted to the channel sections as

shown in Fig. C-2. These configurations were under consideration for laboratory tests.

ANSYS (ref. C-2), a general-purpose commercial finite element code, was used to cream the
finite element models of the box prototypes. Two separate models were built to analyze the boxes
with bolted-on and bonded-on laminate covers. Each model utilized 441 nodes and 360 elements.

The only differences between the two models were the constraint equations used to model the
interface between the flanges of the aluminum channels and the laminates. Fig. C-3 shows the

overall configuration of the models.

Shell elements were used to model the thin-walled boxes. The element used from the

ANSYS element library was the STIF 43, an isoparametric quadrilateral shell element. The STIF
43 was chosen over the more standard STIF 63 because of its superior response to in-plane shear.

Bolts were modeled as rigid links at the bolt locations between the aluminum and the laminate. The
connection between the channel flange and the laminate for the bonded model was modeled by

using rigid links between all of the node pairs along the interface surface. This creates the
assumption that the bond is perfect, which leads to good correlation with experimental results for a
similar box beam configuration. In order to obtain pure bending conditions, the beams were
loaded by the use of enforced displacements at the end of the beam near the origin. Displacements
were enforced to insure that the cross sections remained planar at the loaded ends.

A comparison of results showing camber curvature of the top and bottom covers for the
bolted and bonded cases is given in Table C-1. The camber curvature from the t'mite element
model was found to be constant along the beam length for both cases. This result corresponds the

prediction by the classical theory. Fig. C-4 shows the deflected shapes predicted by the finite
element model and the classical model for the bolted configuration. The deflected shapes are nearly
identical.

Agreements between classical models and the finite element models are excellent.
Examination of the results indicates that the theory is very accurate for the cases studied, and,

therefore, should provide an excellent basis for further tailoring studies.
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CHORDWISE CAMBER CURVATURE (IN -l)

hi.9.I2tR,.Z3C_
CLASSICAL

FINITE ELEMENT

PERCENT DIFFERENCE

SOL'n_ BONDED
0.01040 0.00954

0.01054 0.00947

I.l -0.7

TABLE C-I. - FINITE ELEMENT CORRELATION STUDY

FIGURE C-I. - BOX BEAM WITH BONDED COVERS
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APPENDIX D

RIB CONCEPTS FOR CHORDWISE DEFORMABLE WINGS

Along with the development of elastically tailored chordwise deformable wings, it is
necessary to design a compatible fib structure that allows the chordwise deformation to occur while
still performing some of the traditional functions 0f a rib. A traditional rib is designed to: 1)
preserve the cross section geometry, 2) distribute pressure loads to the spars and stiffeners, 3)
support the wing covers, and 4) serve as attachment locations for system equipment. The new
chordwise deformable rib still transfers pressure loads and provides cover support, but it must
allow the cross section geometry to camber. Five new rib design concepts appear in figs. D l-D5.

Figure D-1 shows the Vertical Column Support type of rib structure. This style of rib is
attractive because it is easily joined to the proposed grid stiffening structure of the wing box. Due
to the method of constructing the grid structure, convenient points of attachment for the columns
are created. To minimize the restraint of rib on chordwise deformation, it is proposed to use

universal joints to attach the columns to the grid. The grid structure needs to be sized such that the
columns can be placed at the proper spanwise intervals so that they support the covers against

general instability buckling modes.

The Accordion Rib, unlike the column supports, provides continuous chordwise support to
the covers while still allowing differential expansion of the upper and lower structural wing box
covers. The Accordion Rib looks much like the pleated portion of an accordion. The pleats will

conform to the grid structure as shown in fig. D-2.

The Diagonal Rib Structures, figs. D-3 and D-4, consist of diagonal columns fastened to the

grid structure like the Vertical Columns via universal joints. Figure D-3 shows the Segmented
Diagonal Columns jointed at their intersection while fig. D-4, Crossed Diagonal Columns, shows

no midsection joint.

The Floating Rib Structure, fig. D-5, is constructed of crossed diagonal ribs with one end
fastened with a universal joint and the other free to float. The floating end rests on an abrasion pad

that attaches to the upper and lower wing covers.

A detailed design analysis is required for sizing the individual elements in these
configurations. These suggestions should prove useful as technology for chordwise deformable

wings advances.
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FIGURE D-1. VERTICAL COLUMN SUPPORT
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JOINT

FIGURE D-3. SEGMENTED DIAGONAL COLUMNS
WITH MIDSECTION JOINTS

NO JOINT

FIGURE D-4. SEGMENTED DIAGONAL SUPPORTS
WITHOUT MIDSECTION JOINTS
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UNIVERSAL JOINT ABRASION PAD

FIGURE D-$. FLOATING RIB STRUCTURE
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A

APPENDIX E

STATIC AEROELASTIC ANALYSIS OF CHORDWISE
DEFORMABLE WINGS

Preliminary Remarks

Hereweexplorethepossibilityof whatmaybecalled"bendingdivergence'.The occurrence
of a static instability of this type arises because wing bending produces positive camber, which, in
turn, produces additional lift, and, hence, increased bending of the wing. There also remains the
potential threat of torsional divergence or, due to elastic coupling, some coupled form of bending -
torsion instability.

Static instability is detected by a linearized set of equations that corr_pond to a disturbance
from an equilibrium flight condition. The physics of the disturbed state is usually described by
homogeneous equations without prescribed external generalized forces. Non-trivial solutions to
the homogeneous equations correspond to static instability. For this reason, we need only
consider the homogeneous equations of static equilibrium. The non-trivial solutions correspond to

adjacent equilibrium states from the basic state under consideration.

Basic Theory

Divergence will be explored in a very simple context. Consider a uniform straight wing that
is described aerodynamically by quasi-steady incompressible strip theory. The wing is designed
with spanwise bending - camber elastic coupling. The section lift increment produces the
following distributed loading qz:

qz = clc^q (E-I)

with the section lift coefficient given by

ci = aoo_ + GH_c / 2 (E-2)

and

q :½P..V_ (F,-3)

is the dynamic pressure. In addition, there is a distributed torque about the shear center axis; it is

given by (fig. 7)

!

mx = MAC + YACqz (E-4)

!

where MAC is pitching moment per unit span about the aerodynamic center.

!

MAC = CMACC2Aq (E-5)

where
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CMAC = = GH_ / 8 (E-6)

For constitutive relations, a classical bending theory approximation without direct transverse
shear deformations is taken.

Kxx = - W,xx = S55My (E-10)

= - Sc5My (E-I 1)

a,x = S44Mx (E-12)

where

and

We have bowed to tradition and denoted a, the increment in angle of attack, as the elastic rotation
angle.

Divergence Analysis

Equation (E-8) is used to eliminate the shear force Qz in eq. (E-7). The equilibrium equations
(E-7) and (E-9), therefore, with the aid of eqs. (E-l) - (E-6) and (E- 10) - (E-12), may be written as

CAqaotx + My,xx - k2My = 0 (E-7a)

C44(x.xx+ C1eaoq0_ - CAk2(e - 4J-)My = 0 0E-9a)

k2 = GH CAqSc5 (E-13)
2

If there is no torsional divergence, we set ot = 0 in eq. (E-7a). Then

My,xx - k2My = 0

e = YAC/ CA (E- 14)

To the level of approximation of a thin airfoil in incompressible flow and the assumption of a
chordwise centrally located structural box, e = 1/4 and eq. (E-9a) reduces to

C44ct,xx + CA2eaoqa = 0 (E-15)

This is the usual equation for torsional divergence. Consequently, we conclude that torsional
divergence is unaffected by elastic chordwise camber within the limits of this model.

(E-16)

The equilibrium equations are

Qza + qz = 0 (z - force) (E-7)

My.x = Qz (y - moment) (E-8)

Mx,x + mx = 0 (x- moment) (F,-9)
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The general form of solutions to this equation is

My = Clsinh (kx) + C2cosh (kx)

Consider the wing fixed at the root (x = O) and free at tip (x = L).

M_L)=O

Q_L) = My.x(L)= 0

(E-17)

Consequently, at x = L

(E-IS)

(E-19)

These conditions lead to

sinh(kL) cosh(kL) IICIL O] (E-20)[
kcosh (kL) ksinh (kL) Jkc2J-Lo

Only trivial solutions can be found to this system of equation. Either Cl = C2 = 0 (no bending
response) or k = 0, which corresponds to V.. = 0.

Concluding Remarks

A static aeroelastic analysis has been performed for a uniform wing in incompressible flow.
On the basis of the analysis of this elementary model, it is concluded that the only. static instability
is torsional divergence, and it is unaffected by elastic chordwisc camber. It remains to explore the
effects of wing sweep and supersonic flight conditions. However, in subsonic flight, we expect
no strong interaction between camber and twist for the case of spanwisc bending - camber
designed-in coupling.
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APPENDIX F

AN ELEMENTARY MODEL FOR STRUCTURAL DYNAMICS

Introduction

Typical section models were created by aeroelastic pioneers to provide insight into behavior
and provide trend information before the age of computers. A thorough discussion of these
models is presented by Bisplinghoff and Ashley (ref. F-1). Initially, section model properties
were defined to correspond to a single "typical" section, usually taken to be the section at the three-

uarter span location. Dynamic response was determined by solving a system of ordinary
ifferential equations with time as the independent variable. Even today, typical section models

remain useful for teaching, promoting physical understanding and providing trend information.

Theoretical models with the same complexity as the typical section type can be developed
using a different physical basis for def'ming the parameters of the models. Perhaps the most direct
way is to use Lagrange's equations and a single generalized displacement for each distinct .t_ypeof
physical displacement variable. For continuous systems, this Is accomplished easily by taking a
single mode to represent each physical displacement variable. This approach is adopted here. It is
perhaps more appropriate to call such a model an "energy-based section model."

Elementary models of this type are particularly useful for exploring trends in dynamic
situations such as flutter, gust response and transient dynamic structural response. Dynamic stress
predictions may be inadequate for design purposes, but overall displacement response predictions
are usually informative as are flutter predictions. Modal truncation errors must be evaluated on the
usual bases such as natural frequency and mode shape.

Basic Theory

We restrict our attention to uniform straight wings with chordwise compact sections. In
addition, we consider only spanwise bending and twisting types of deformation. The transverse
displacement is given by

u=v=0 (F-l)

w = W(x,t) + ya(x,t) (F-2)

All section warping effects are neglected. Refer to fig. F-I.

Neglecting the effects of transverse shear deformations, the strain energy associated with
spanwise bending and twisting is

+ 2c,5a. (- w,,) + dx 0:-3)

The semi-span of the wing is L. If the wing is clamped at the root x = 0, we assume the following

forms for W and a:

w = us(t)(1- cos 0::-4)

cz = u4(t) sin (_e2L) (F-5)
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The generalized displacements are the modal amplitudes u5 and us, which are functions of time
only.

For a uniform wing and these assumed modes, the strain energy is

u=21[c; u +2c;,u,u +c;,u o:-6)
where the generalized stiffnesses are

it

C44 - _::2C44 / 8L (F-7)

It

C45 = - n3C45 / 16L 2 (F-8)

It

C55 = =4C55 / 32L 3 (F-9)

The kinetic energy, T, for spanwise bending and twisting motion is

T = 1 p(w) dz dy dx 2 [Ia (u4) 2 + 2Sau4u5 +
2 ^ =

where

and

M* = mL (3/2 - 4/=) (F-13a)

S_ = SotL/n (F- 13b)

i; = I,,L/ 2 (F-]3c)

m=Ifc pdzdy,
A

Sa = _ _^ py dz dy,

mass/unit span (F- 14a)

(F-14b)

l fc mass moment of inertiaIa = py2 dz dy, aooutme shear center _txis/unit" span
A

The following integrals were useful for evaluating the generalized masses in eqs. 0:-13):

I2 = sin 2 dx =LI2 (F-15a)

static unbalance/unit span

(1:-144:)
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13-- sin {2L/LX-)cos clx = I=/n (F-15b)

The virtual work of the external forces is evaluated using strip theory aerodynamics with an

effective dynamic angle of attack O.ddefined as

The result is

oto = ot - _,/V.. (F-16)

t It8We = I qz 8W dx = L (SW + Y'AC80_)dx = QaSu4 + Q58u5
(F-17)

M'ii + D_i + C*xt= Au (F-20)

u = (u4us) r (Generalized Displacement Vector) (F-21)

Equation (F-19a) physically corresponds to the moment of momentum about the shear center axis.
Equation (F-19b) physically corresponds to u'ansverse linear momentum. The equations represent
motion due to a small disturbance from an equilibrium state and correspond to what we call an

energy-based section model.

Stability Considerations

It is convenient to write eqs. (F-19a,b) in matrix form. We introduce the following notation:

(Generalized Mass Matrix)

It

I_ii4 + S_ii5 + C44u4 + C45u5 - Q4 = 0

S_ti4 + M'ii5 + C_5u4 + C55u5 - 0.5 = 0

(F-22)

(F-19a)

(F-19b)

where the generalized forces are

Q4 = aoCAqLyAc (U4/ 2 - 4ti5 / (F- Sa)

Q5 = aoC ^qL (4u4 / _ - (3/2- 4/n) u5 / 8V.) (F- 18b )

With the aid of Lagrange's equations, the following equations of motion are obtained:
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where

[" "]C • = C44 C4s

C45 Css

[ 0 D45 ]D
L 0 D55

• 0

(Generalized Stiffness Matrix)

(Aerodynamic Damping Matrix)

(Steady Aerodynamic Matrix)

('F-23)

(I::-24)

 -25)

a2 = I_C55 + M*(C;4 - A44)- S_(2C45 - A45)

a 3 = D55 (C44- A44)- D45 (C45- A45 )

a4 = C55(C44 - A44)-C45 (C45 - A45) (F-31e)

Information on stability can be obtained without actually solving eq. (F-30). There are two
necessary conditions for none of the roots Pl .... , P4 of eq. (F-30) to have positive real parts.
These conditions are (ref. I:-2):

(F-31a)

(F-31b)

(F-31c)

(F-31d)

(A44, A45) = aoCAqL (Y--_-,_) (F-27)

This notation facilitates understanding by identifying the physical nature of the individual terms.

Equations (F-20) constitute of system of linear homogeneous ordinary differential equations
with constant coefficients. Solutions are of the form

(u4,us)= Ks) 0=-28)

The constants A4 and A5 are modal amplitudes. The substitution of eq. 0::-28) into eq. (1=-20)
yields the following system of equations:

[M'p2 + Dp + (C* -A)]

Non-trivialsolutionscorrespondtothe vanishingofthedeterminantof thecoefficientmatrix.

The determinantofthe coefficientmatrixcorrcspondstothcfollowingcharacterisfcequation:

aop4 + alp3+ a2p2 + a3p + a4= 0 (F-30)

The coefficientsinthisequationarc
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.

2.

All of the coefficients ao, ..., a4 of the characteristic polynomial must
have the same sign.

None of the coefficients are zero.

Since these conditions are only necessary, their satisfaction does not guarantee stability. They may

be used, however, to identify unstable situations quite easily. Necessary and sufficient conditions
for stability are provided by the Routh-Hurwitz cnterion (ref. F-l).

In the special case a4 - 0, there are two zero roots to eq. (F-30). This condition corresponds
to _ or _,_. It is identif_,,d with a critical value of the dynamic pressure q.

Parametric Studies

A parametric study has been conducted for a model box beam specimen with cross sectional
geometry shown in fig. 28. Fifty percent of the laminate thickness is taken to be [0] plies and fifty

percent to be angle plies with orientation angle [0]. The laminated covers, therefore, have

unbalanced ply layups. The laminate material properties are given in table 2. In addition, the
following parameter values were selected for this study:

ao=2n, CA=2Cs=8.00in, L=64.00in

V, = 550.00 mph = 9684 in/see

Air density (at sea level) p, = 0.114 x 10 -6 lb-sec2/in 's

Laminate density: 0.1477 x 10 .3 lb-sec2/in 'l

Aluminum density: 0.2539 x 10 .3 lb-sec2/in 4
Dynamic pressure: q = 5.375 psi

Mass/unit span of box: m = 0.1484 x 10 .3 lb-sec2/in 2

Mass moment of inertia/unit span: la = 0.3083 x 10. 3 lb-sec2/in

Three distinct configuration types were considered; they were (1) the structural box section
shown in fig. 28, (2) twenty-five percent distributed mass added to the leading edge of the
structural box (the front spar web) and (3) twenty-five percent distributed mass added to the
trailing edge of the structural box (the rear spar web). Calculated results for the various
coefficients in eq. (17-30) for the parameter values selected are presented in figs. (F-2) - (F-6). It is
possible to make all of the coefficients positive -- that is, stabilize the system - by proper choice of
the ply angle. This confirms the design approach used on the X-29 aircraft to prevent torsional
divergence. The coefficients ao, al and a2 can be influenced by mass addition.

Vanishing of the coefficient a4 coresponds to torsional divergence, the static form of
instability. Vanishing of the coefficient a2 corresponds to flutter, the dynamic form of instability.
Note that fig. F-4 shows that both ply angle changes and mass addition can be used to stabilize the
system against flutter, but ply angle orientation is the more powerful of the two approaches to use
for design intervention.
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